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1. 0-States of HeH*+
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The Least-Squares Local Energy Method is used to calculate energies and wavefunctions
for the four lowest o states of HeH*+. An alternative scheme for evaluation of the pertinent
matrices is shown which, for exponential-power series wavefunctions, greatly reduces the time
necessary for the sum-over-points. The numerical behavior of the variance with changes in the
nonlinear parameters is shown for this molecule and an iterative procedure for minimization
of variance with respect to nonlinear parameters is proposed.

Mit der Methode lokaler Energie werden Energien und Wellenfunktionen fiir die vier tief-
sten o Zusténde von HeH++ berechnet. Dabei wird ein anderes Verfahren zur Berechnung der
auftretenden Matrizen aufgezeigt, bei dem fiir Wellenfunktionen mit e=%"-Faktor die Rechen-
zeit stark verringert wird. Der Einflul nicht-linearer Parameter auf die Rechnung wird
diskutiert und ein iteratives Verfahren zu ihrer Optimalisierung vorgeschlagen.

La méthode des moindre carrés pour I'énergie locale est utilisée pour calculer les énergies
et les fonctions d’onde pour les quatre plus bas états ¢ de HeH. Un autre schéma d’évalua-
tion des matrices nécessaires est proposé; pour des fonctions d’onde séries exponentielles

A

puissances ce schéma réduit considérablement le temps nécessaire & la sommation sur les
points. Le comportement numérique de la variance selon les modifications des paramétres non
linéaires est exposé pour cette molécule. Un proeédé itératif pour la minimisation de la va-
riance par rapport aux paramétres non linéaires est proposé.

Introduction

Due to its conceptual simplicity and the elimination of requirements for eva-
luation of complicated integrals, Frost’s Least-Squares Local Energy Method and
related problems [2, 6, 8] continue to be of considerable interest.

Serious doubts as to the extendibility of the Local Energy Method were raised
by GiMarc and Frost in describing their results for the lithium atom [3e]. Some
of the problems can be summarized as:

1. The excessive amount of computer time required for long wavefunctions and
large numbers of points.

2. The treatment of different exponential parameters for different orbitals for
three-electron and higher cases.
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3. The choice of nonlinear parameters especially for excited states or for
systems for which the experimental energies are not known.

The first of these problems is discussed in the next portion of this work and a
procedure is presented which, for exponential-power series wavefunctions, greatly
reduces the required computational time. This particular procedure is especially
useful in formally considering the question of minimization of the variance with
respect to nonlinear parameters and this is discussed in the last section. The HeH++
molecule-ion is used as an example and energies and wavefunctions for the four
lowest sigma states are determined.

Alternate Computational Scheme

A short review of the Local Energy Method is useful at this point. The variance,
V, is defined as the mean-square minus the square-mean local energy,

V=g g 1)
with £ and &2 defined as weighted averages over a set of points, p,
E= 2 gpenl2 9p 2= 2 gpe > Ip 2)
3 Iy P ?
where
ep = H p(p)/y(p) (3)
If g, is chosen as
9p = wp Y*(p) (4)
we have
= 2 Wp )/ Z wp Y2(p) (5)
D
= 2 wpl y(p) 2/2 wzﬂ/)
P
For ¢ chosen as a linear combination of bams functions, ¢;,
p=2dici, (6)
k2

requiring ¥ to be a minimum with respect to the linear parameters, {¢;}, leads to
the set of simultaneous equations

Z [Gﬁ — 28 Hy + (62 — ¥) Sislei; =0 (7)
i
where it has been convenient to define matrices S, H, and G as:

Sij = 2 wyp :(p) ¢i(p)
4
Hij =3 > wpli(p) # i(p) + di(p) H $i(p)] (8)
4
Gig = 2 wplH ¢i(p)] [ ¢4(p)] -
»

The sequence of steps that have been used in compilation of the §, H, and G
matrices can be outlined as:

{(a) Choose a point, p, and calculate wp.

(b) Evaluate @ = {¢;(p)} and Hy; = {£ ¢i(p)}.

(c) Add the proper contribution to each matrix element in §, H, and G.

(d) Cyecle from (a) through (c) for each point.
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Calculations, to date, have involved only rotationless states with trial func-
tions expressible as exponential-power series in either interparticle or mixed infer-
electronic-confocal elliptic coordinates. For these functions, equations have been
given [3f, 4] for 5¢; and these have been used in general or explicit form in the
second step above. It has been shown [5] for functions of this type that, after
multiplication by a suitable function, ¢, of the coordinates, g3#¢; is expressible in
the basis set {¢;} as:

gt b = 2. by by (9)
7

where the hj; are determined by inspection.

Definition of
w, = Wpq?
$i(p) = (wy)'h ¢ilp) (10)
i = §¢f 8ji

and substitution of (9) and (10) into (8) leads to
Sij = kzlsm' sij 2, $3(p) $1(p)
3 ?

Hy=3 kZl [hig ske + hai 8151 D, dilp) d1(p) (11)
S »
Gij = kZl bs bag 2, $(p) 1(p) -
5 4

An alternate procedure for compilation of S, H, and G could then be:

(a) Choose point, p, and evaluate w},

(b) Evaluate @’ = {¢;(p)}. @’ is larger than the @ from the earlier procedure.

(¢) Add the proper contributions to @” where @” is a vector containing the
distinet elements of @'T @',

(d) Cycle from (a) through (c) for each point.

(e) Form §, H, and G using (11).

In this procedure then, only the wavefunction is summed over the points and the
matrices are formed later. Eq. (11) may be quite complicated computationally
but this is unimportant since they represent a one-time sum.

It is not obvious that the alternate procedure is computationally shorter since,
in general, @” can contain a larger number of elements than S, H, and G. The most
favorable case is one in which the wavefunction is an exponential-power series,
includes all terms up to a given order, and the exponential function is first order
in the coordinates. For the case of a vibrating one-electron heteronuclear diatomic,
the relative calculational times are; about equal for the sum over points with a
four-term function, one-third as great with a twenty-term function, and one-fifth
as great with a thirty-five term function.

Sigma States of HeH++
Wave Function
A reasonable trial function for this molecule should recognize its heteronuclear
nature and the exponential portion should be relatable to the product of the atomic
fanctions as (using notation similar to that of Marcma, Lyox and HIRSCHFELDER
[70)
Yo=0xp(—aZsra— P Zprp) (12)
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where Z 4 is the charge on the He nucleus, Zg the charge on the H nucleus, and «
and 8 are variable parameters. Or, in terms of confocal elliptic coordinates

p=(rat+re)fRB, v=(ra—7p)R

we have
Yo = exp (—~ au — by) (13)
where R is the internuclear distance and
a=R(uZs+ fZB)2, b=R(xZs— pZp)2.

(Note that @ > b if f is to remain positive.)
The complete trial function is chosen as

p=2dici (14)
with
$i = (m, n) = u™ v" exp (—au — b,) . (15)

A ten-term function was used in this work and it included all terms with total
order less than or equal to three.

Points
Gauss-Laguerre [9] points, x;, and weights, H,,, were used for the u coordinate
i = Tipeq + 1. (16)

For the v coordinate, Gauss-Legendre points are appropriate for b = 0 while for
b+ 0, orthogonal polynomials, their zeros and Gaussian weights were determined
for integrals of the form

+1

[ e i) dy =3 flan) (17)
1 =
Series Bxpansions
The appropriate expansion and weight factors would be:
q= (u*— %)
wyp = (B%8) (u® —»?) H, H, (18)
wy, = R H, H,[8(u? — v?)

H,, H, = Gaussian weights for g and ».
If we first define

7k + n, 1+ n) = > w, dk, 1) ¢(m, n) (19)
)
and
p:k—l—m 7‘=k-—m
s=14+n t=1—n

the expressions for §;; and Hy; become, for b = 0,

Skt,mn =30+ 4,8) — 24(p+ 2,5+ 2) + x(p, s + 4)
— 2R? Hyymn =402 y(p+ 4, 5) — 4y (pa + 2a — S3R) x(p + 3, 5) (20)
—4da?y(p+ 2,8 +2)—4Ry(p+ 2,8+ 1) + (p® + 72
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— 82— 124+ 2p— 25 —da) y(p+ 2, 8)
+(2+R2—28)y(p+2,8—2)+4pe+2a—3R) ylp+ 1,5+ 2)
+dpay(p+1,8)+ 4B y(p, s +3)— (PP + 2+ 2+ 8

— 2p — 2s) x(p, $) (20)
— (P 1% — %2 — 12+ 2p — 25 — 4a?) y(p, s + 2)
—4pay(p—1,8+2)+ (PP+ 7 —2p)g(p— 2,8+ 2).

The equation for G;; will not be shown to save space; it is a 22-term function in-
volving terms of up to fourth order in a.

Numerical Results

For the internuclear distance fixed at 2.0 bohrs, Fig. 1 shows the behavior of
the variance with respect to the exponential parameter @ when b is fixed at zero.
In each case, V is minimized with respect to the coefficients in the wavefunction.
V', refers to the variance associated with the lowest energy, V,, the variance asso-
ciated with the next lowest energy, etc. The curves shown refer to 25-point (5 in u
and 5 in ,) ten-term calculations. These calculations were repeated with 49 points
(7in g and 7in,) and essentially the same curves were found only shifted to higher
variances. The 25-point, ten-term calculations should be approximately equivalent
to Frost’s 12-point nine-term calculation [3¢] on Hy*. The 25 points should be
sufficient to exactly evaluate the overlap integrals.

8

Fig. 1. Variance plotted versus the single exponential parameter (a) for the four lowest sigma,
states of HeH*+. Values refer to 25-point, 10-term calculations for R = 2.0 bohrs. Minima
caleulated from quadratic fits are marked with squares
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Fig. 2. Values of a corresponding to minima in the variance for fixed 4. Absolute minima are
marked with squares. Values refer to 25-point, 10-term caleunlations for B = 2.0 bohrs

Of course, when both ¢ and b are allowed to vary (& = b) surfaces are generated
versus variance. Each surface was found to exhibit a single minimum. The sur-
faces are not shown here but, in Fig. 2, the minima in V for each value of b are
shown (over the range investigated) and the absolute minima are marked with
squares.

Optimum values of the exponential parameters and the energies and variances
calculated for these values are presented in Tab. 1 for each of the four lowest

Table 1. Optimum parameters, energies (in hartrees) and variances for HeHt+. All calculations
refer to 25-point, 10-term functions with R = 2.0 bohrs

o b 1s0 2p0 250 3do
- V x 108 -¢ V x 108 -—¢ V x 108 —¢ V x 108

2.163 0 2.50661 46.08 1.34116  9.333  0.720946 37.30

1.368 0 249833 84.58 1.34452  3.383  0.783515 1.822  0.502743 10.40

1.248 0 2.40191 1118 1.34422 3.556  0.784850 1.668  0.532680 4.334
1.000 0 2.46142 226.7 1.34369 4977 0.784796 2402  0.537917 1.527
2.08 1.25 2.51204 0.9225 1.31936 51.36 0.763533 15.18

1.38 0.25 2.50532 3754 1.34502  0.3620 0.785777 0.6687 0.509907 13.2¢4

1.25 1.00 2.51056 6.349 1.34000 23.68 0.787064 0.01637 0.527044 9.864
1.00 040 248445 111.2 1.34408  2.260  0.786603 0.03777 0.535764 0.3408

Exact® 2.512195 1.846185 0.78709 0.571255
s See Ref. [1].
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Table 2. Single-exponential parameters for HeH* jor 10-term
functions, 256-point calculations and R = 2.0 bohrs

State Bates and CArsoxe This work
25 points 49 points

1so 2.24151 2.163 2.240
2po 1.64024 1.368 1.389
2s0 1.25466 1.248 1.243

3do 1.06888 1.000 0.973
= See Ref. [1], these values = ( —2E) —'/a.

sigma states. Also shown in this table are the optimum single-exponential (b = 0)
values. These values refer to 25-point calculations. The results for the 3 do state
are poor but this is not surprising with a wavefunction containing no terms higher
than third order.

Worth noting is the approximate agreement between the optimum single-
exponential values for a and those determined by the exact calculations of BATES
and CarsoN [1]. In Tab. 2, the 25- and 49-point optimized values for a are given
along with the values of BaTEs and Carson [1]. Reasonable agreement is also
found with the corresponding values for ¢ and b determined by Marcra, Lyox
and HIRSCHFELDER in their perturbation treatment of the ground state {7]. For
the ground state at R equal to 2.0 bohrs, they found a = 2.10 and b = 1.82 versus
a = 2.08 and b = 1.25 determined in this work.

General Treatment of Nonlinear Parameters

Most earlier calculations by the Local Energy Method have used exponential
parameters either chosen to facilitate comparison with other methods of calcula-
tion or obtained from asymptotic solutions using known energies. In the above
work, surfaces were investigated to determine the optimum values of the para-
meters. GiMARc and Frost have considered the minimization of variance with
respect to exponential parameters in calculations involving the helium [3a] and
lithium [3e] atoms. In both cases they were treating the lowest state of the parti-
cular symmetry involved and in both cases either considered the single exponential
case or reduced the problem to one of a single variable through use of asymptotic
solutions. (In these calculations, a could have been obtained from the asymptotic
solution.) Gmmarc and Frost found the energy and variance to be rather insensi-
tive to changes in the exponential parameter for wavefunctions of ten terms or
more which is reasonably true for HeH++ when dealing with the lower two states
and a single exponential parameter. For the higher states greater changes in the
variance were found and for some parameter choices we were unable to obtain
convergence for the 3 do state. When two parameters are involved, drastic changes
in the variance are observed even for the ground state. In their calculations, the
optimum exponential parameter was found to not change smoothly as more terms
were added to the wavefunction. This problem was not investigated as we felt that
the optimum parameters for a given function were more important at this point.

Clearly, a systematic procedure is needed if several nonlinear parameters are
to be used ; this would be particularly important for excited states since the ground
state seems to be less sensitive to the values of exponential parameters.
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Requiring the variance to be a minimum for parameters other than the coeffi-

cients {¢;},
oV
Lad -0
<3 D‘)ﬁ: v, ven, B, €y, Cg, ** v, Cn

leads to a set of simultaneous equations similar to those obtained for linear para-
meters:

—2¢

2

[ 0 Gy a Hij b7 Sij
R

o . T )3

The earlier discussed alternate computatlonal formalism seems particularly
suitable for computations involving this set of equations. It can normally be
assumed that wy, ¢, and the sy; are not functions of the parameters so that

38“ ZsszZjZ ¢k ¢z

o H, ah ah
a”=52[< “+ Ski ”)E?SHS:
& El

o
+ (817 hrs + s Sws) ﬁkjl} (22)

8 has I 8 ¢ i
3 (S gy S,
kil

In the above expressions for the derlvatlves, the sums over points are either
the same as or are related to those for the variation of linear parameters. In parti-
cular, if the nonlinear parameters are exponential and the exponential variables
are to first order, the order of functions summed over increases one degree in total
order. That is, using the HeH++ case with b = 0

¢=0. (21)

Fj Gey

9 Srt,mn
S = — ply(p+5,8) = 2x(p + 3,5+ 2) + 40 + L, s + )]
0 Het,mn
R2 ak;’ =4a® y(p + 5,8) + 4 (3R — pa — 3a) x(p + 4.3)

—4a?y(p+3,5+2) —4Ry(p+ 3,5+ 1)
+ (P22t dp—4ds— 4o+ 4)x(p+3,9)
+ (22 —28)x(p+3,5s—2)— [4(BR — pa — 3a) (23)
P+ 25+ 2)]+dalp+ 1) g0+ 28+ 4B y(p+ 1,5+ 3)
—[(p? 4+ 12— s* — 12+ 4p — 45 — 402 + 4)
(p+L,s+2)]— P+ + 82+ 82— 2s5)ylp+ 1,5+ 2)
— @ R = 20) g (p o+ 4,5+ 2) — Ma(p + 1)
wp s+ 2) ]+ PP+ glp— 1,5+ 2).
For exponential parameters and variables to the first order, these Eq. (22) will,
in general, lead to mixed quartic equations in the parameters.
A suggested iterative procedure that is undergoing numerical investigation is:
(a) Choose initial values for the nonlinear parameters «, g, - - -.
(b) Form the matrices S, H, G.
(c) Solve for ¢, V, and {¢;} by minimizing V.
(d) Use these &, V, and {¢;} in Eq. (21) to determine new «', ', - - -
{e) Cycle from (b) to (d) until convergence is obtained.
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