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The Least-Squares Local Energy Method is used to calculate energies and wavefunctions 
for the four lowest ~ states of HetI++. An alternative scheme for evaluation of the pertinent 
matrices is shown which, for exponential-power series wavefunctions, greatly reduces the time 
necessary for the sum-over-points. The numerical behavior of the variance with changes in the 
nonlinear parameters is shown for this molecule and an iterative procedure for minimization 
of variance with respect to nonlinear parameters is proposed. 

Mit der Methode lokaler Energie werden Energien und Wellenfunktionen fiir die vier tief- 
s tena  Zust/~nde yon Hell++ bercchnet. Dabei wird ein anderes Verfahren zur Berechnung der 
auftretenden Matrizen aufgezeigt, bei dem ffir Wellenfunktionen mit e-~r-Faktor die Rechen- 
zeit stark verringert wird. Dcr Einflul~ nieht-linearer Parameter auf die Reehnung wird 
diskutiert und ein iteratives Verfahren zu ihrer Optimalisiemmg vorgeschlagen. 

La m6thode des moindre carr6s pour l'6nergie locale est utilis6e pour ealculer les 6nergies 
et les fonctions d'onde pour les quatre plus bas 6tats a de Hel-I. Un autre sch@ma d'@valua- 
tion des matrices n6cessaires est propos6; pour des fonctions d'onde s6ries exponcntielles 
puissances ce sch6ma r@duit consid@rablement le temps n@cessaire s la sommation sur les 
points. Le comportement num@rique de la variance selon les modifications des param~tres non 
lin6aires est expos@ pour cette mol@eule. Un proe6d6 it6ratif pour la minimisation de la va- 
riance par rapport aux param~tres non lin@aires est propos6. 

Introduction 

Due to i ts  eonceptuM s impl ic i ty  and  the  e l iminat ion  of  requ i rements  for eva-  
lua t ion  of  compl ica ted  integrals ,  F r o s t ' s  Leas t -Squares  Local  E n e r g y  Method  and  
re la ted  p rob lems  [2, 6, 8] cont inue to  be of  considerable  in teres t .  

Serious doub t s  as to  t he  ex tend ib i l i t y  of the  Local  E n e r g y  Method  were ra ised 
b y  GI~IAI~C and  FI~osT in descr ibing the i r  resul ts  for the  l i th ium a t o m  [3el. Some 
of  t he  p rob lems  can be summar ized  as:  

i .  The  excessive a m o u n t  of  compute r  t ime  requi red  for long wavefunct ions  and  
large numbers  of  points .  

2. The  t r e a t m e n t  of  different  exponent ia l  pa r a me te r s  for different  orbi ta ls  for 
th ree-e lec t ron  and  higher  eases. 
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3. The choice of  nonlinear parameters  especially for excited states or for 
systems for which the experimental energies are not known. 

The first of ~hese problems is discussed in the next portion of this work and a 
procedure is presented which, for exponential-power series wavefunctions, greatly 
reduces the required computational time. This particular procedure is especially 
useful in formally considering the question of minimization of the variance with 
respect to nonlinear parameters  and this is discussed in the last section. The I-IeI-I++ 
molecule-ion is used as an example and energies and wavefunctions for the four 
lowes~ sigma states are determined. 

Alternate Computational Scheme 
A short review of the Local Energy iV[ei~hod is useful at this point. The variance, 

V, is defined as the mean-square minus the square-mean local energy, 

V = ~2 _ ~2 (i) 

with ~ and ~ defined as weighted averages over a set of points, p, 

= Z ~v ~ / Y  g~ 8~ = Z g~ ~ / ~  q~ (2) 
P P P T 

where 
s~, = ~ y , (p) /y;(p) .  (3) 

I f  g~ is chosen as 
gv = wv V;~(p) (4) 

we have 

(5) 
P P 

P 

For ~v chosen as a linear combination of basis functions, r 

yJ = ~ r c~, (6) 
i 

requiring V to be a minimum with respect to the linear parameters, {ci}, leads to 
the set of simultaneous equations 

Z [r - 2~/~s + (~ - v) s~s] c~s = 0 (7) 
i 

where it has been convenient to define matrices S, H, and G as: 

z~s = ~ wv r  Cs(p) 
P 

~,s = ~ 5 w~[r ~ r  j(p) + Cs(p) ~ r  (8) 
P 

r = Y w v [ ~  r  [ ~  Cs(p)] 

The sequence of steps tha t  have been used in compilation of the 3, H, and G 
matrices can be outlined as: 

(a) Choose a point, p, and calculate w~. 
(b) ~ v a l u a t e  ~ = { r  and ~ = { ~  r 
(c) Add the proper contribution to each matr ix  element in S, H, and G. 
(d) Cycle from (a) through (c) for each point. 
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Calculations, to date, have involved only rotationless states with trial func- 
tions expressible as exponential-power series in either interparticle or mixed inter- 
electronic-confocal elliptic coordinates. For these functions, equations have been 
given [3f, 4] for ~ r  and these have been used in general or explicit form in the 
second step above. I t  has been shown [5] for functions of this type that,  after 
multiplication by a suitable function, q, of the coordinates, q~r is expressible in 
the basis set {r as: 

q5/~162 = Z r hii (9) 
i 

where the hli are determined by inspection. 
Definition of 

! 

% = w~/q~ 

r = (w;)I/~ r  (10} 

qr = Z CJ 8j~ 
i 

and substitution of (9) and (i0) into (8) leads to 

k,1 p 

k,1 p 

k,l p 

An alternate procedure for compilation of S, H, and G could then be: 
P (a) Choose point, p, and evaluate wv. 

(b) Evaluate ~5' = {r ~b' is larger than the qi from the earlier procedure. 
(e) Add the proper contributions to ~" where r  is a vector containing the 

distinct elements ofqS'~q)'. 
(d) Cycle from (a) through (c) for each point. 
(e) Form S, H, and G using (i l) .  

In this procedure then, only the wavefunction is summed over the points and the 
matrices are formed later. Eq. ( i i )  may be quite eomphcated computationally 
but  this is unimportant since they represent a one-time sum. 

I t  is not obvious that  the alternate procedure is computationally shorter since, 
in general, ~b" can contain a larger number of elements than S, H, and O. The most 
favorable case is one in which the wavefunction is an exponentiM-power series, 
includes all terms up to a given order, and the exponential function is first order 
in the coordinates. For the ease of a vibrating one-electron heteronuclear diatomic, 
the relative calculational times are; about equal for the sum over points with a 
four-term function, one-third as great with a twenty-term function, and one-fifth 
as great with a thirty-five term function. 

Sigma States of IIeIt++ 
Wave Eunction 

A reasonable trial function for this molecule should recognize its heteronuclear 
nature and the exponential portion should be relatable to the product of the atomic 
functions as (using notation similar to tha t  of MiTC~A, LYoN and Itn~SCE~ELDE~ 
[7]) 

~v 0 = exp ( -- ~ ZA r A  - -  fi Z B  rB)  (12) 
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where ZA is the charge on the He nucleus, ZB the charge on the H nucleus, and 
and/~ are variable parameters. Or, in terms of confocal elliptic coordinates 

~t = (r A ~- rB) /R , v = (rA -- rB) /R 

we have 

~v o = cxp ( - -  a#  -- by) (i3) 

where R is the internuclear distance and 

a = R(or ZA + fl Z B ) / 2 ,  b = R ( ~  ZA -- fl ZB) /2 .  

(Note that  a > b fffi  is to remain positive.) 
The complete trial function is chosen as 

w = Z r c~ (14) 
i 

with 
r = r n) =/~'~ v~ e x p  ( - a / ~  - by).  (15) 

A ten-term function was used in this work and it included all terms with ~otal 
order less than or equal to three. 

Points  

Gauss-Laguerre [9] points, x,, and weights, Hg, were used for the/z coordinate 

#~ = x~12a + I .  (t6) 

For the v coordinate, Gauss-Legendre points are appropriate for b = 0 while for 
b # 0, orthogonal polynomials, their zeros and Gaussian weights were determined 
for integrals of the form 

+1 

f e-~by t(Y) dy  = Z H j  ](y j ) .  (17) 
] = 1  

--1 

Series Expans ions  

The appropriate expansion and weight factors would be: 

q = ( /~  - v~) 

wv = (R~/8) (/z ~ - v 2) H~ H~ (iS) 
w'~ = R ~ H~ H ~ / S ( ~  - v ~) 

H~, H~ = Gaussian weights for/~ and u. 
I f  we first define 

z(k + n, 1 A- n) = 5 w~ r l) r  n) (19) 
P 

and 

p = k + m  r = k - m  

s = l  A - n  t = l - n  

the expressions for Sit  and Hi1 become, for b = 0, 

S~ ,m ,n  = )~(p + 4, s) - 2)/(p + 2, s + 2) + Z(P, s + 4) 

- -  2 R  2 H ~ l , m , n  = 4a ~ Z(P A- 4, 8) -- 4 Z (pa § 2a -- 3R) Z(P § 3, 8) 

--  4a2 z ( P  q- 2, s + 2) - -  4 R  z ( p  A- 2, s A- t )  + (P2 § r 2 

(20) 



Nonlinear Parameters in the Least-Squares Local Energy 1VIethod. I 307 

- -  s 2 -  t 2 + 2 p - -  2 s - -  4 a  2) Z(P + 2, s) 

+ (s ~ + t ~ -  2s) z (p  + 2, s - -  2) + 4(pa + 2 a - -  3R) z (p  + i ,  s + 2) 

+ 4 p a z ( p  § i ,  s) + 4 R  Z(P, s + 3) --  (p2 + r ~ + s 2 + t ~ 

- 2 p  - 2s)  z ( p ,  s) (20)  

_ (p2 4- r 2 -  s 2 -  t 2 4- 2 p - -  2 s - -  4 a  2) Z(p ,  s 4- 2)  

-- 4pa X(P -- 1, s 4- 2) 4- (p2 4- r 2 _ 2p) Z(P --  2, s 4- 2 ) .  

The equa t ion  for Gti ~ l l  no t  be shown to save space;  i t  is a 22- term funct ion  in- 
volving t e rms  of  up  to  four th  order  in a. 

N u m e r i c a l  Resul ts  

F o r  t he  in te rnuc lea r  d is tance  fixed a t  2.0 bohrs,  Fig.  I shows the  behav ior  of  
the  var iance  wi th  respect  to  the  exponent ia l  p a r a m e t e r  a when b is f ixed at  zero. 
I n  each case, V is minimized  with  respect  to  t he  coefficients in ~he wavefunet ion.  
V 1 refers %o the  var iance  associa ted wi th  the  lowest  energy,  Vz, t he  var iance  asso- 
c ia ted  wi th  the  nex t  lowest  energy,  etc. The  curves shown refer  to  25-point  (5 in # 
and  5 in  ~) t en - t e rm calculat ions.  These calculat ions were r epea ted  wi th  49 poin ts  
(7 in # and  7 in ~) and  essent ia l ly  the  same curves were found  only  shif ted to  higher  
var iances .  The  25-point ,  t e n - t e r m  calculat ions should be a p p r o x i m a t e l y  equiva len t  
to  F r o s t ' s  12-point  n ine- te rm calculat ion [3c] on tIz+. The 25 poin ts  should be 
sufficient to  exactly evaluate the overlap integrals. 
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Fig. ~. Variance #lotted versus the single exponential parameter (a) for the four lowest sigma 
states of Hel l  ++. Values refer to 25-point, t0-term calculations for R = 2.0 bohrs. Minima 

calculated from quadratic fits are marked with squares 
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Fig. 2. Values of a corresponding to minima in the variance for fixed b. Absolute minima are 

marked with squares. Values refer to 25-point, 10-term calculations for /~  = 2.0 bohrs 

Of  course,  w h e n  b o t h  a a n d  b a re  a l lowed  to  v a r y  (a ~ b) sur faces  are  g e n e r a t e d  

v e r s u s  va r i ance .  E a c h  su r face  was  f o u n d  t o  exh ib i t  a s ingle m i n i m u m .  T h e  sur-  

faces  are  n o t  s h o w n  he re  bu t ,  in  Fig .  2, t h e  m i n i m a  in  V for  each  v a l u e  o f  b a re  

s h o w n  (over  t h e  r a n g e  i n v e s t i g a t e d )  a n d  t h e  abso lu t e  m i n i m a  a re  m a r k e d  w i t h  

squares .  
O p t i m u m  v a l u e s  o f  t h e  e x p o n e n t i a l  p a r a m e t e r s  a n d  t h e  energies  a n d  v a r i a n c e s  

c a l cu l a t ed  fo r  t he se  v a l u e s  a re  p r e s e n t e d  in  Tab .  i for  each  o f  t h e  f o u r  lowes t  

Table I. Optimum parameters, energies (in hartrees) and variances/or Het t  ++. All calculations 
re/er to 25-point, lO-term /unctions with t t  = 2.0 bohrs 

a b lsa 2pa 2sa 3da 
- s  V x 10 a - s  V x 10 a - e  V x 10 a - s  V x 10 a 

2.t63 0 2.50661 46.08 1.34116 9.333 0.720946 37.30 
t.368 0 2.49833 84.58 1.34452 3.383 0.783515 t.822 0.502743 10.40 

1.248 0 2.49191 111.8 1.34422 "3 .556  0.784859 1.668 0.532680 4.334 
1.000 0 2.46142 226.7 t.34369 4.977 0.784796 2.402 0.537917 t.527 

2.08 t.25 2.51204 0.9225 1.31936 5t.36 0.763533 15.18 
1.38 0.25 2.50532 37.54 t.34502 0.3620 0.785777 0.6687 0.509907 13.24 

t.25 1.00 2.51056 6.349 1.34000 23.68 0.787064 0.01637 0.527044 9.864 
1.00 0.40 2.48445 t t l . 2  1.34408 2.260 0.786603 0.03777 0.535764 0.3408 

Exact  S 2.512195 !.345t85 0.78709 0.571255 

a See l~ef. [1]. 
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Table 2. Single-exponential Tarameters /or Hell ++ for lO-term 
/unctions, 25-point calculations and R = 2.0 bohrs 

State BAT~,s and C ~ s o ~  This work 
25 points 49 points 

lsa 2.24t51 2A63 2.240 
2pa 1.64024 1.368 1.389 
28a 1.25466 1.248 t.243 
3da 1.06888 1.000 0.973 

a See Re/. [l], these values = (-2E) _1/~. 

sigma states. Also shown in this table are the optimum single-exponential (b = 0) 
values. These values refer to 25-point calculations. The results for the 3 da state 
are poor but this is not surprising with a wave/unction containing no terms higher 
than third order. 

Worth noting is the approximate agreement between the optimum single- 
exponential values for a and those determined by the exact calculations of BATES 
and C~SON [l]. In  Tab. 2, the 25- and 49-point optimized values for a are given 
along with the values of BATES and C ~ s o ~  [l]. Reasonable agreement is Mso 
found with the corresponding values for a and b determined by ~ATCHA, Lu162 
and HmSC~ELDV, R in their perturbation treatment of the ground state [7]. For 
the ground state at R equal to 2.0 bohrs, they found a = 2.10 and b = 1.82 versus 
a = 2.08 and b ~ 1.25 determined in this work. 

General Treatment of Nonlinear Parameters 

Most earlier calculations by the Local Energy Method have used exponential 
parameters either chosen to facilitate comparison with other methods of calcula- 
tion or obtained from asymptotic solutions using known energies. In  the above 
work, surfaces were investigated to determine the optimum values of the para- 
meters. GI~_~c and F~osT have considered the minimization of variance with 
respect to exponential parameters in calculations involving the helium [3a] and 
lithium/3el atoms. In  both eases they were treating the lowest state of the parti- 
cular symmetry involved and in both cases either considered the single exponential 
case or reduced the problem to one of a single variable through use of asymptotic 
solutions. (In these calculations, a could have been obtained from the asymptotic 
solution.) G~A~c and F~osT found the energy and variance to be rather insensi- 
tive to changes in the exponential parameter for wave/unctions of ten terms or 
more which is reasonably true for Hell++ when dealing with the lower two states 
and a single exponential parameter. For the higher states greater changes in the 
variance were found and for some parameter choices we were unable to obtain 
convergence for the 3 da state. When two parameters are involved, drastic changes 
in the variance are observed even for the ground state. In  their calculations, the 
optimum exponential parameter was found to not change smoothly as more terms 
were added to the wave/unction. This problem was not investigated as we felt that  
the optimum parameters for a given function were more important at this point. 

Clearly, a systematic procedure is needed if several nonlinear parameters are 
to be used; this would be particularly important for excited states since the ground 
state seems to be less sensitive to the values of exponential parameters. 
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Requir ing the  var iance  to be a m i n i m u m  for pa rame te r s  other  t han  the  coeffi- 
cients {c/}, 

= 0  
fl, v,  . . . ,  ~, cl,  c~, �9 � 9  cn 

leads to a set of  s imul taneous equat ions similar to  those obta ined  for linear para-  
meters :  

r a G. 0 H~s + a Z,sl 

The earlier discussed a l te rna te  computa t iona l  formal ism seems par t icular ly  
suitable for computa t ions  involving this  set of  equations.  I t  can normal ly  be 
assumed t h a t  wp, q, and the  s~g are not  functions of  the  pa rame te r s  so tha~ 

8 ~ k , l  20 8 ~ 

F/ ~ h~ 8 hls ~ , 

I n  the  above  expressions for the  derivat ives,  the  sums over  points  are either 
the  same as or are re la ted to  those for  the  var ia t ion  of linear parameters .  I n  par t i -  
cular, ff  the  nonlinear  pa ramete r s  are exponent ia l  and the  exponent ia l  var iables  
are to  first order, the  order  of  funct ions s u m m e d  over  increases one degree in to ta l  
order. T h a t  is, using the  He l l++  case with b = 0, 

aa  P[X(P + 5, s) -- 2X( p + 3, s + 2) + Z(P + ~ ,s  + 4)] 

H~Lmn 
R~ - -  -- 4a~ Z(P + 5, s) + 4 (3R -- pa -- 3a) Z(P + 4,s) 8 a  

- - 4 a 2 z ( P +  3, s +  2 ) - - 4 R z ( p +  3, s +  i) 
+ (p2 + r 2 _  s ~ _  t ~ +  4 p - -  4 s - -  4a  ~'+ 4) X ( p +  3, s) 

+ (s 2 § t g -  2s) g(p + 3, s - -  2) -- [4 ( 3 R - -  p a - -  3a) (23) 

Z(P + 2, s + 2)] + 4a(p + l ) g ( p  + 2, s) + 4R  z (p  + i, s + 3) 

__  [ ( p 2  + r 2 _ 8 2  _ t 2 + 4p  --  4s  - -  4a ~ + 4) 

X(P + l, s + 2)] --  (p~ + r 2 + s 2 + t ~ -  2s) Z(P + l, s + 2) 

-- (p~ § r ~ + s ~ + t ~ -  2s) z(p  + l, s + 2 ) - -  [4a(p + l) 

;/(p, s + 2)] + (p~- + r ~) ;/(p - i ,  s + 2 ) .  

For  exponent ia l  pa rame te r s  and  var iables  to  the  first order, these Eq.  (22) ~_li, 
in general, lead to  mixed  qnar t ie  equat ions in the  parameters .  

A suggested i tera t ive  procedure t h a t  is undergoing numerical  invest igat ion is: 
(a) Choose initial  values  for  the  nonlinear pa rame te r s  a,  fl, - - -. 
(b) F o r m  the matr ices  S, H,  G. 
(c) Solve for s, V, and  {cl} b y  minimizing V. 
(d) Use these s, V, and  {c~} in Eq.  (2i) to  determine new ~' ,  fi', . . . .  
(e) Cycle f rom (b) to (d) unti l  convergence is obtained.  
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